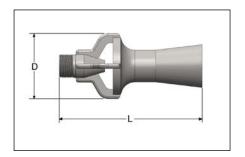
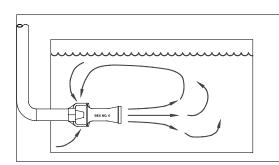



# STAINLESS STEEL EDUCTORS


| MODEL  | Pipe                                   | Dim.                           | Dim.                          |
|--------|----------------------------------------|--------------------------------|-------------------------------|
| NUMBER | Size                                   | L                              | D                             |
| ТОМ    | 3/8 NPT Male                           | $e 	 4^{1}/_{2} 	 2^{1}$       |                               |
| T2M    | 3/4 NPT Male                           | $6^{3}/_{8}$                   | 3                             |
| T22M   | 3/4 NPT Male                           | 6 <sup>3</sup> / <sub>8</sub>  | 3                             |
| T3M    | 1 NPT Male                             | 81/2                           | 33/4                          |
| T4M    | 1 <sup>1</sup> / <sub>2</sub> NPT Male | 9 <sup>7</sup> / <sub>8</sub>  | 4 <sup>5</sup> / <sub>8</sub> |
| T5     | 2" NPT Female 121/4                    |                                | 4 <sup>7</sup> / <sub>8</sub> |
| T6     | 3" NPT Female                          | 17 <sup>1</sup> / <sub>8</sub> | $7^{1}/_{2}$                  |

**EDUCTOR PRINCIPLES:** 



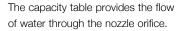

BEX eductors use a unique venturi design which enables smaller pumps to circulate large volumes of tank solution. The eductor will circulate four to five gallons of solution for each gallon pumped.

BEX eductors are used for mixing chemicals, suspending solids, adjusting pH, "sweeping" debris or sludge toward a filter intake and many other useful applications.



# **USING BEX EDUCTORS AS** STEAM SPARGERS:




## **APPLICATIONS:**

BEX Steam Spargers heat water and other liquids quickly and efficiently by direct injection of steam. They are designed for tank immersion and eliminate water hammer noise.



#### CONSTRUCTION:

Standard materials are cast CF8M (316) Other materials are available upon request.





# TYPICAL APPLICATIONS:

- Plating Tanks
- · Cleaning Tanks
- Phosphating Tanks
- Fertilizer Tanks
- Pulp Tanks
- Sludge Tanks
- Anodizing Tanks
- Cooling Towers
- Decorative Fountains

To determine discharge, multiply this value by five (5).

| Model | Max. Free<br>Passage<br>(in) | CAPACITY AT VARIOUS PRESSURES<br>(USGPM) |           |           |           |           |           |           |           |
|-------|------------------------------|------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|       |                              | 10<br>psi                                | 15<br>psi | 20<br>psi | 25<br>psi | 30<br>psi | 35<br>psi | 40<br>psi | 50<br>psi |
| ТОМ   | 0.288                        | 7.5                                      | 9.2       | 10.6      | 11.9      | 13.0      | 14.0      | 15.0      | 16.8      |
| T22M  | 0.386                        | 13.5                                     | 16.5      | 19.1      | 21.0      | 23.0      | 25.0      | 27.0      | 30.0      |
| T2M   | 0.422                        | 16.1                                     | 19.7      | 22.8      | 25.0      | 27.0      | 30.0      | 32        | 36        |
| ТЗМ   | 0.481                        | 21.0                                     | 26.0      | 30.0      | 33        | 36        | 39        | 42        | 47        |
| T4M   | 0.612                        | 33                                       | 40        | 47        | 52        | 57        | 62        | 66        | 74        |
| T5    | 0.781                        | 55                                       | 67        | 78        | 57        | 95        | 103       | 110       | 123       |
| T6    | 1.188                        | 126                                      | 154       | 178       | 199       | 218       | 236       | 252       | 282       |

### SELECTING THE RIGHT EDUCTOR:

(1) Calculate the required steam flow rate from the following equation:

Temp. increase of water (°F) x weight of water (lbs.)

> Time allowed to heat tank (hrs.) x 1000

(2) Knowing the steam flow rate and the steam pressure available at the sparger, choose the sparger(s) from the table below. Using several small spargers may be advisable to using one large sparger.

(3) To help eliminate steam hammer, ensure that the minimum absolute pressure of the eductor is at least twice the absolute pressure inside the tank, at eductor depth.

- 1 Imperial gallon of water = 10.00 lbs.
- 1 cubic foot of water = 62.40 lbs.
- 1 U.S. gallon of water = 8.33 lbs.
- 1 litre of water = 2.20 lbs.

|       | Max. Free | STEAM CAPACITIES (lbs/hr) |                            |      |      |      |      |      |      |
|-------|-----------|---------------------------|----------------------------|------|------|------|------|------|------|
| Model | Passage   |                           | AT VARIOUS PRESSURES (psi) |      |      |      |      |      |      |
|       | (in)      | 20                        | 30                         | 40   | 60   | 80   | 100  | 120  | 150  |
|       |           | psi                       | psi                        | psi  | psi  | psi  | psi  | psi  | psi  |
| ТОМ   | 0.288     | 136                       | 175                        | 214  | 293  | 371  | 450  | 214  | 646  |
| T2M   | 0.386     | 212                       | 273                        | 334  | 456  | 579  | 701  | 334  | 1006 |
| ТЗМ   | 0.481     | 352                       | 453                        | 555  | 758  | 861  | 1164 | 555  | 1671 |
| T4    | 0.612     | 590                       | 760                        | 930  | 1270 | 1610 | 1950 | 930  | 2800 |
| T5    | 0.781     | 896                       | 1154                       | 1412 | 1929 | 2445 | 2962 | 1412 | 4253 |
| T6    | 1.188     | 1975                      | 2544                       | 3113 | 4252 | 5390 | 6528 | 3113 | 9374 |